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1 Abstract

We generate extensions of Q with Galois group SL3(F2) giving rise to three-
dimensional mod 2 Galois representations with sufficiently low level to allow
the computational testing of a conjecture of Ash, Doud, Pollack, and Sinnott
relating such representations to mod 2 arithmetic cohomology. We test the
conjecture for these examples and offer a refinement of the conjecture that
resolves ambiguities in the predicted weight.

2 Introduction and statement of the conjecture

The purpose of this paper is to test the main conjecture of [2] in characteristic 2.
This conjecture (which we will refer to as the Ash-Doud-Pollack-Sinnott or
ADPS conjecture) asserts the existence of Hecke cohomology eigenclasses in
the mod p cohomology of certain arithmetic subgroups of GLn attached to n-
dimensional mod p representations of the absolute Galois group of Q. The
conjecture essentially boils down to Serre’s conjecture if n = 2. In [2] the
conjecture was tested in hundreds of three-dimensional examples with p an odd
prime. Because the computer programs at that time couldn’t handle it, the case
of p = 2 was not treated in that paper.

1The first and third authors wish to thank the National Science Foundation for support of
this research through NSF grant number DMS-0139287.
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In an earlier paper [3], mod 2 cohomology was computed for GL3 up to level
151, but only for trivial coefficient modules. All the Galois representations into
SL3(F2) attached to these cohomology eigenclasses which we were able to find
at that time had reducible image. Until the research reported upon here, it
was an open question whether this would always be the case, at least for trivial
coefficients. We now see that levels up to 151 were simply too small to provide
examples of Galois representations with image SL3(F2).

In the current paper we restrict ourselves to Galois representations whose
image is the full group SL3(F2). To generate examples of such representations,
we searched through parameterized families of polynomials with Galois group
equal to SL3(F2) (referred to from now on as SL3(F2)-polynomials) published by
Malle [6] to find those for which the ADPS conjecture predicts a corresponding
Hecke cohomology class with a level small enough to allow feasible computations.
In practice, this meant keeping the level below 500. To do this, we excluded
representations that were wildly ramified outside 2.

In the end we tested 27 polynomials, including 7 that were suggested by the
referee. Our results are tabulated in section 6 below. Concisely, one may say
that the ADPS conjecture was again vindicated by the experimental evidence.
In particular, we shall see that cohomology classes with trivial coefficients can
be attached to irreducible SL3(F2)-representations.

We now give the the precise setup of the ADPS conjecture in the special
case of a Galois representation with irreducible image in GLn(F2):

Let Γ0(N) be the subgroup of matrices in SLn(Z) whose first row is con-
gruent to (∗, 0, . . . , 0) modulo N . Define SN to be the subsemigroup of integral
matrices in GLn(Q) satisfying the same congruence condition and having posi-
tive determinant relatively prime to N .

Let H(N) denote the F̄2-algebra of double cosets Γ0(N)SNΓ0(N). Then
H(N) is a commutative algebra which acts on the cohomology and homology of
Γ0(N) with coefficients in any F̄2[SN ] module. When a double coset is acting on
cohomology or homology, we call it a Hecke operator. Clearly, H(N) contains all
double cosets of the form Γ0(N)D(`, k)Γ0(N), where ` is a prime not dividing
N , 0 ≤ k ≤ n, and

D(`, k) =



1
. . .

1
`

. . .
`


is the diagonal matrix with the first n − k diagonal entries equal to 1 and the
last k diagonal entries equal to `. When we consider the double coset generated
by D(`, k) as a Hecke operator, we call it T (`, k).

Definition 1. Let V be an H(2N)-module, and suppose that v ∈ V is a simul-
taneous eigenvector for all T (`, k) and that T (`, k)v = a(`, k)v with a(`, k) ∈ F̄2
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for all ` 6 |2N prime and all 0 ≤ k ≤ n. If

ρ : GQ → GLn(F̄2)

is a representation unramified outside 2N , and

n∑
k=0

(−1)k`k(k−1)/2a(`, k)Xk = det(I − ρ(Frob`)X)

for all ` 6 |2N , then we say that ρ is attached to v (or that v corresponds to ρ).

Now let
ρ : GQ → GLn(F̄2)

be a continuous irreducible representation. We will define a level associated to
ρ exactly as Serre does in [7].

For each prime q 6= 2 fix an embedding of GQq
into GQ as the decomposition

group of a prime above q and, for i ≥ 0, let gi = |ρ(Gq,i)| where the Gq,i are
the ramification subgroups of GQq with the lower numbering. Let M be an
n-dimensional F̄2-vector space and choose a basis of M so that GQ acts on M
via ρ in the natural way. Define

nq =
∞∑

i=0

gi

g0
dim M/Mρ(Gq,i).

The sum defining nq is actually a finite sum, since eventually the ρ(Gq,i) are
trivial.

Definition 2. With ρ as above, define the level

N(ρ) =
∏
q 6=2

qnq .

Note that this product is actually finite, since ρ is ramified at only finitely
many primes and nq is 0 at primes where ρ is unramified.

Before stating the conjecture, we note that there are exactly four irre-
ducible representations of GL3(F2) over F̄2. These are the trivial represen-
tation, the three-dimensional standard representation and its dual, and the
eight-dimensional Steinberg representation. When thought of as restrictions
to GL3(F2) of highest weight representations of GL3(F̄2) these are the represen-
tations with highest weights (0, 0, 0), (1, 0, 0), (1, 1, 0), and (2, 1, 0) respectively.
We denote the representation with highest weight (a, b, c) by F (a, b, c).

We may now state the ADPS conjecture for p = 2 where the image of ρ is
SL3(F2):

Conjecture 1. Let ρ : GQ → SL3(F2) be a continuous surjective Galois rep-
resentation. Further, let N = N(ρ) be the level of ρ. Then for at least one
irreducible representation V of GL3(F2), ρ is attached to a cohomology eigen-
class in H∗(Γ0(N), V ).
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Given a Galois representation ρ, the full ADPS conjecture predicts not only
a level but also a nebentype character and a collection of weights (i.e. irreducible
coefficient modules). When ρ takes values over F2, however, the nebentype is
automatically trivial, and the weight is completely undetermined because of the
ambiguity of the “prime” notation (see [2] for the definitions of nebentype and
“prime” notation, which we will not need again in this paper.) Below we discuss
which weights are observed to provide the predicted cohomology, and we refine
the conjecture in this context.

In practice, we can only check the equality of Hecke and characteristic poly-
nomials that is required by the definition of “attached” for primes ` up to some
bound. For this paper we checked all ` ≤ 47. When these polynomials coin-
cide for all ` ≤ 47 we shall say that the Galois representation “appears” to be
attached to the Hecke cohomology eigenclass.

Our paper is organized as follows: In section 3 we present our predictions
regarding which of the four weights to expect for a given Galois representation.
In section 4 we discuss Malle’s parametrized families of SL3(F2)-polynomials and
how we sifted through them to find ones that predicted small levels. In section 5
we discuss the methods used to compute the mod 2 arithmetic cohomology for
Γ0(N) ⊂ GL3(Z). In section 6 we present our results.

We thank John Jones and David Roberts for providing their very useful
local fields calculator and especially David Roberts for help in interpreting its
output. We are also grateful to Gunter Malle for assistance in locating families
of PSL2(F7)-polynomials and to Darrin Doud for his careful proofreading. Fi-
nally, it is a pleasure to thank the referee for pointing out how to simplify the
computation of the level with Theorem 2 and for providing additional number
fields on which to test our conjecture.

3 Refining the weight prediction

Given a Galois representation ρ : GQ → SL3(F̄2), the ADPS conjecture does not
predict for which of the four possible weights we should find a corresponding
Hecke eigenclass. After reviewing about half the data from our calculations, we
saw how to adapt Serre’s discussion of peu ramifée vs. très ramifée from [7] to
refine the ADPS conjecture in the special case ρ : GQ → SL3(F2) to predict
exactly which weights to expect, depending only on ρ|I2. This refinement then
correctly predicted the weights for the remaining data. There are, nonethe-
less, some cases of the refinement that did not occur in our data. We indicate
which these are in our discussion below–our predictions for these cases remain
unsupported guesses.

Let’s arrange the four possible weights in a diamond pattern:

F (2, 1, 0)

F (1, 1, 0) F (1, 0, 0)

F (0, 0, 0)
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Note that the two weights in the middle are isomorphic under the outer auto-
morphism τ of SL3(F2) given by the composition of transpose-inverse and the
long Weyl element. (So τ preserves the Borel subgroup of upper triangular
matrices.) The other two weights are self-dual. We set ρτ = τ ◦ ρ.

It follows from a duality result [2, Theorem 3.10] that if either representation
ρ or ρτ is attached to a cohomology class with weight F (0, 0, 0) or F (2, 1, 0)
then the other representation is as well. Likewise if ρ or ρτ is attached to a
cohomology class with weight F (1, 0, 0) then the other representation is attached
to a class with weight F (1, 1, 0), and conversely.

When our refined conjecture predicts any weight it also predicts all the
weights above it in the diamond. This seems to leave us with four possible sets of
weights. Two of these, however, cannot be distinguished without differentiating
between ρ and ρτ . While this can be achieved by comparing the traces of images
of elements of order 7 in GQ, it would require making explicit our choice of ρ.
Rather than do this (say by looking at actual permutations of the roots of the
SL3(F2)-polynomial defining ρ) we consider ρ and ρτ together and make one of
the following three predictions:

I Both ρ and ρτ have a class attached with every possible weight.

II ρ has a class attached with weight F (1, 0, 0) or F (1, 1, 0) and ρτ has a
class attached with the other weight. Both ρ and ρτ have a class attached
with weight F (2, 1, 0).

III ρ and ρτ have a class attached with weight F (2, 1, 0).

We explain below how to predict I, II, or III based on ρ|I2 . In each case
we’ve tested, the weights we’ve predicted turn out to be precisely those which
have classes with the corresponding ρ or ρτ attached. In a number of cases these
classes appeared with multiplicity greater than 1, but we have no explanation
for this.

Recall that the niveau of ρ is defined to be the smallest integer m such that
ρ on tame inertia factors through F̄×2 → F×2m . In our case, if the ramification
index e of the prime 2 in the fixed field of the kernel of ρ factors as 2bt, with t
odd, then the niveau is 1,2,3 when t is 1,3,7 respectively.

The representation ρ has niveau 1 if and only if ρ(I2) is a 2-group. If ρ
does not have niveau 1 we predict case I. If ρ does have niveau 1 we will base
our prediction on the nature of the ramification of certain quadratic extensions
associated to ρ.

Let E/Q2 be an unramified extension, and let E(
√

b)/E be a ramified
quadratic extension. We say E(

√
b) is “peu ramifée” if v2(b) is even, or equiva-

lently if b can be taken to be a unit. We say it is “très ramifée” otherwise.
Let D2 be a decomposition group at a prime above 2 and set K to be the

fixed field of the kernel of ρ|D2 , a finite extension of Q2. Let E be the maximal
unramified subextension of K/Q2, so that the Galois group of K/E is ρ(I2)
where I2 = G2,0.

Since the 2-Sylow subgroup of SL3(F2) is isomorphic to the dihedral group
D4 of size 8, if ρ(I2) is a 2-group it must be isomorphic to a subgroup of D4.
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1. If ρ(I2) ∼= C2 has size 2, then K itself is a ramified quadratic extension of
E. We say that ρ is peu ramifée or très ramifée according to which K/E
is. This case did not arise in any of our examples.

2. If ρ(I2) ∼= C4 is cyclic of size 4 there is a unique quadratic subextension
L of K/E. Then L/E is ramified and we say that ρ is peu ramifée or très
ramifée according to which L/E is. Our only examples turned out to be
très ramifée.

3. If ρ(I2) ∼= V4 is isomorphic to the Klein four group then K/E has 3
quadratic subextensions, all of which are ramified. These extensions are
obtained by adjoining the square roots of b1, b2, and b1b2 to E so they
are either all peu ramifée or exactly two of them are très ramifée. In the
former case we say that ρ is peu-peu ramifée and in the later case we say
that ρ is peu-très ramifée. Our only example turned out to be peu-peu
ramifée.

We can get further information in this case by looking at ρ(D2) which can
be isomorphic to S4, A4, D4, or V4. If ρ(D2) ∼= S4 or A4, then the three
elements of order 2 in ρ(I2) are all conjugate in ρ(D2). Thus the three
quadratic subextensions of K/E are all isomorphic (over Q2, but not over
E). Thus if any of them are très ramifée they must all be très ramifée.
This isn’t possible, so we conclude that in this case ρ is peu-peu ramifée.

If ρ(D2) ∼= V4 then E = Q2. So the three ramified quadratic subex-
tensions of K/E are actually quadratic extensions of Q2. The only peu
ramifée extensions of Q2 are Q2(

√
3) and Q2(

√
7). If K/Q2 has these as

subfields, then the third quadratic subfield must be Q2(
√

21) = Q2(
√

5)
which is unramified. This contradicts the fact that Q2 = Kρ(I2), and so
we conclude that in this case ρ is peu-très ramifée.

If ρ(D2) ∼= D4 (unfortunate clash of notations) then ρ can be peu-peu
ramifée or peu-très ramifée.

4. If ρ(I2) ∼= D4 is isomorphic to the dihedral group of size 8 then since
ρ(I2) C ρ(D2) but D4 6CS4 we see that ρ(D2) = ρ(I2). Thus E = Q2. Now
ρ(I2) has two subgroups isomorphic to V4, these are conjugate under τ .
Let L1 and L2 be the fixed fields of these two subgroups. So L1 and L2

are ramified quadratic extensions of Q2. If both L1/Q2 and L2/Q2 are
peu ramifée then, as above, K would contain the unramified quadratic
field Q2(

√
5). So at least one of L1 and L2 is très ramifée. We say ρ is

peu-très ramifée if one of L1/E and L2/E is peu ramifée and the other
is très ramifée, and ρ is très-très ramifée if both L1/E and L2/E are très
ramifée. We have examples here of both types.

We can now make our desired predictions:

1. If ρ is peu ramifée or peu-peu ramifée we predict case I.

2. If ρ is peu-très ramifée we predict case II.
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3. If ρ is très ramifée or très-très ramifée we predict case III.

We conclude this section by explaining how we determined into which of
these cases the Galois representations in our table fall. We will work through
three examples, one with ρ(I2) ∼= V4, one with ρ(I2) ∼= C4 and one with ρ(I2) ∼=
D4. All of our niveau 1 examples can be handled using one of these three
discussions. In these discussions we make use of the p-adic fields calculator on
the Jones/Roberts web page [8], which we denote by J/R.

Example: The representation ρ corresponding to polynomial number 2, of
level 181. We use the local fields calculator (J/R) to identify the field K as the
splitting field over Q2 of the quartic polynomial x4 + 6x2 + 10. We thus see
that ρ(D2) ∼= D4. The calculator also tells us that ρ(I2) ∼= D4 (so K is totally
ramified). Further, we are given both the discriminant subfield of K and the
unique quadratic subfield of the quartic extension of Q2 generated by a root
of f . Looking at the subgroup lattice of D4 and using some elementary Galois
theory it is easy to see that these are the two quadratic extensions, called L1

and L2 above, which determine the type of ramification of ρ. In this case the
two fields are Q2(

√
−1) and Q2(

√
10). Since one of these is peu ramifée and

the other is très ramifée, ρ is peu-très ramifée. The eight other examples with
ρ(I2) ∼= D4 are handled in exactly the same manner.

Example: The representation ρ corresponding to polynomial number 12, of
level 313. Here J/R tells us that K is the splitting field of x4 + 8x + 104,
that ρ(D2) ∼= D4, and that ρ(I2) ∼= C4 is cyclic of size 4. Of course, the field
E = Kρ(I2) must be Q2(

√
5) since it is an unramified quadratic extension of

Q2. Further we are told by J/R that the fields L1 and L2 fixed by the two
subgroups of D4 isomorphic to V4 are Q2(

√
−10) and Q2(

√
−2). Again looking

at the subgroup lattice of D4 we see that the quadratic subfield L of K/E is
L1L2=Q2(

√
−10,

√
−2) = Q2(

√
5,
√
−2) = E(

√
−2). Thus K/E is très ramifée,

and so ρ is très ramifée.
Example: The representation ρ corresponding to polynomial number 19, of

level 383. This time J/R tells us that ρ(D2) ∼= A4 and ρ(I2) ∼= V4. Thus as
we’ve seen above ρ must be peu-peu ramifée.

4 Finding examples

Our goal is to check the ADPS conjecture for p = 2 for Galois representations
with image SL3(F2). To do so, we need to produce polynomials over Q whose
splitting fields have Galois group SL3(F2). Noting that SL3(F2) ∼= PSL2(F7), we
used the four parameterized families of septic polynomials in Z[x] with Galois
group PSL2(F7) found in Malle’s paper [6]. We used PARI/GP and Theorem 2
below to search among these polynomials for ones with levels low enough for
our computational methods (< 500).

Theorem 2 allows us to easily calculate the level of a tamely ramified rep-
resentation. We also, however, computed the levels of several wildly ramified
representations. Since wildly ramified primes tend to appear in the level with
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much higher exponents than tamely ramified primes, the wildly ramified rep-
resentations we looked at all had levels much higher than 500. We therefore
restricted our search to number fields ramified only at primes not equal to 3 or
7. This allowed us to use Theorem 2 and PARI’s nfdisc command to determine
the level and throw out those with level above 500.

In searching the polynomial families, for both three parameter families we
varied all three parameters over the integers between −30 and 30, and for the
four parameter family all four parameters varied over the integers between −20
and 20. Perhaps surprisingly, even large parameter values sometimes yielded lev-
els less than 500, but the yield became sparser as the parameter values increased
in absolute value. In fact, many different sets of parameter values, both from
the same family and from different families, often gave different polynomials
which generated the same field. The higher parameter values often just yielded
repeats of fields already generated by polynomials with smaller parameter val-
ues. In the one parameter family, we ranged the parameters from −10, 000 to
10, 000 and tried rational values of height ≤ 50 but no polynomials determining
fields with levels ≤ 500 were found.

Since for each SL3(F2)-field there are two non-isomorphic septic subfields
fixed by the two index 7 parabolic subgroups, there will always be two distinct
degree 7 subfields with the same SL3(F2) splitting field. This explains why
we often found two distinct septic fields ramified at the same primes and, in
fact, with the same splitting field. In other cases, our search did not locate the
“twin.” (Note that we’ve only listed one polynomial for each distinct splitting
field in Table 3, but in Tables 1 and 2, we’ve included one polynomial for each
distinct septic subfield.)

It seems likely that we would find even more fields if we expanded the pa-
rameter search space further. Indeed, the referee kindly suggested 7 additional
polynomials whose levels are under 500, including one which is (tamely) ramified
at 7. We have verified our refined conjecture for the corresponding representa-
tions, and include these polynomials in our tables.

Now let ρ : GQ → SL3(F2) be a surjective Galois representation, and suppose
that ρ is not wildly ramified at any odd primes. We present the results that
allow us to compute the level of ρ in terms of a degree seven subfield of the fixed
field of ρ.

Theorem 1. Let f be a degree seven monic integral polynomial. Let F/Q be the
field extension generated by a root of f . Let K be the Galois closure of F , and
assume Gal(K/Q) ∼= SL3(F2). Let q be an odd rational prime, tamely ramified
in K. Let ρ : GQ → SL3(F2) be a Galois representation whose fixed field is K.
Let νq be the exponent of q in the Serre conductor of ρ and let N be the level
predicted by the ADPS conjecture. If e = |Iq|, then νq, and therefore the exact
power of q dividing N , can be determined as follows.

1. If e = 2, then νq = 1. Hence q ‖ N .

2. If e = 3, then νq = 2. Hence q2 ‖ N .
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3. If e = 4, then νq = 2. Hence q2 ‖ N .

4. If e = 7, then νq = 3. Hence q3 ‖ N .

Proof. Recall that for p = 2, the level predicted by the ADPS conjecture is

N =
∏

q 6= 2
q|disc(F )

qνq ,

where

νq =
∞∑

k=0

|Ik|
|I0|

(3− dim(F3
2)

Ik).

Here I0 = Iq ⊃ I1 ⊃ I2 ⊃ · · · are the higher inertia groups. In the tame case,
Ik = 0 if k > 0, so

νq = (3− dim(F3
2)

Iq ).

Therefore, to find νq we only need to find the dimension of the fixed space
of Iq (i.e., the dimension of the 1-eigenspace of a generator g of Iq) for each
possible inertial degree e.

1. Assume e = 2. Up to conjugation, g =

 1 1 0
0 1 0
0 0 1

 in SL3(F2). So the

dimension of the fixed space of Iq is 2, and therefore νq = 1, and q ‖ N .

2. Assume e = 4. Up to conjugation, g =

 1 1 0
0 1 1
0 0 1

 in SL3(F2). So the

dimension of the fixed space of Iq is 1, and therefore νq = 2, and q2 ‖ N .

3. Assume e = 3. Up to conjugation, g =

 0 1 0
1 1 0
0 0 1

 in SL3(F2). So the

dimension of the fixed space of Iq is 1, and therefore νq = 2, and q2 ‖ N .

4. Assume e = 7. An element of order 7 in SL3(F2) has seventh roots of
unity as eigenvalues. After base change to F8/F2 and letting σ generate

the Galois group of F8/F2, we find that g =

 ζ7 0 0
0 σ(ζ7) 0
0 0 σ2(ζ7)

, for

some nontrivial seventh root of unity ζ7. The group generated by this
element has trivial fixed space on F3

8 , so νq = 3. Hence, q3 ‖ N .

The following theorem was pointed out to us by the referee; we are grateful
for his help.
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Theorem 2. Let f ,F ,K, and ρ be as in Theorem 1, and suppose ρ is not wildly
ramified at any odd primes. Then the level N(ρ) of ρ predicted by the ADPS
conjecture is the square root of the odd part of the discriminant d(F ).

Proof. Let q be an odd rational prime which is ramified in K. Then since q is
tamely ramified the inertia group Iq ⊂ Gal(K/Q) is cyclic. Let σ be a generator
of Iq, and let l1, . . . , ln be sizes of the orbits of σ on the roots of f . It is well
known that the precise power of q dividing d(F ) is

∑n
i=1(li − 1).

Moreover, the sizes of the orbits of σ on the roots of f are determined by
the order e of σ. We have

1. If e = 2 then σ has two orbits of size 2 and three fixed points. Thus
q2 ‖ d(F ).

2. If e = 3 then σ has two orbits of size 3 and one fixed point. Thus q4 ‖ d(F ).

3. If e = 4 then σ has one orbit of size 4, one orbit of size 2, and one fixed
point. Thus q4 ‖ d(F ).

4. If e = 7 then σ has a single orbit, of size 7. Thus q6 ‖ d(F ).

Comparing this with theorem 1 we see that the exact power of q dividing
d(F ) is the square of the exact power of q dividing N(ρ). This proves the
theorem.

5 Computing the cohomology

Our computations of the mod 2 arithmetic cohomology of the Γ0(N) were carried
out using programs based on those written for the calculations in [2]. We will
review the basic approach taken by the original programs (see [2, Sect. 8] for
more details) and then mention a few of the particular adaptations we made in
the new version.

In actual fact, we do not compute cohomology groups at all, but rather
work with the homology groups H∗(Γ0(N),M) to which they are naturally
dual. Moreover, we only compute H3. This is simpler than computing H1 or
H2 since the virtual cohomological dimension of SL3(Z) is 3. Since we are only
interested in irreducible Galois representations here, testing our conjecture for
H3 is equivalent to testing it for H∗ [4]. Finally, as explained below, what we
actually compute is the Γ0(N)-invariants in H3(∆,M), where ∆ is a torsion-free
normal subgroup of finite index in Γ0(N).

We use the SL3 variant of Theorem 2.1 of [1] to identify the Γ0(N)-invariants
of H3(∆,M) with the subspace of all v ∈ V such that

1. v · d = v for all diagonal matrices d ∈ SL3(Z)

2. v · z = −v for all monomial matrices of order 2 in SL3(Z)

3. v + v · h + v · (h2) = 0,
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where

h =

 0 −1 0
1 −1 0
0 0 1

 .

This is the space on which we act our Hecke operators and look for suitable
eigenclasses.

In [2, Sect. 8] we explain in detail the models we use for the modules V
that arise, as well as our methods for solving the linear algebra problem above.
Since we are working in characteristic 2 we are no longer able to use a projection
operator to find the solutions to equations (1) and (2), but instead use the same
approach for these as we do for equation (3).

Although the linear algebra involved is abstractly a simple row reduction,
the size of the matrices involved has prompted us to balance the concerns of
memory usage against run time. For instance, in the course of computing with
N = 443 and M = F (2, 1, 0) we needed to find the kernel of a 1, 573, 544×66, 009
matrix. This is far too large for us to store in resident memory, especially since
the matrix becomes less sparse as the row reduction proceeds. As explained
in [2] our programs make use of disk storage and swap parts of the matrix in
and out of resident memory as the calculation proceeds. The new versions of the
program expand on this idea and also use the disk to store bases for subspaces
that arise during the calculation of the kernel (c.f. [2, pg. 575]). We have
also adjusted some of our algorithms to cut down on the number of disk swaps
required and more efficiently access the data structures in which the resident
portions of the matrix are being stored.

The computation of the actions of the Hecke operators on the homology
group is done exactly as in [2], except that as a final optimization in all of the
programs we have taken advantage of the fact that our coefficients are numbers
modulo 2 to hardcode the field arithmetic and reduce storage size.

6 Results

The following tables contain the results of our calculations. Table 1 describes
the SL3(F2)-polynomials we found that give feasible levels, indicating how these
polynomials arise from the families in [6] and giving the decomposition of the
primes 2 and N (the level) in the septic extension of Q defined by the polynomial.
Table 2 gives the actual coefficients of these polynomials, as well as of seven
addition polynomials suggested by the referee. Both tables list the predicted
level of the corresponding Galois representation.

Table 3 contains one row for each of the distinct SL3(F2)-fields we investi-
gated. Each such field corresponds to two Galois representations, called ρ and
ρτ above. For each field, we list the inertia group at 2 and the common niveau
of ρ and ρτ , and indicate the common peu ramifée/très ramifée nature of ρ and
ρτ . We also list the weights for which we observed a cohomology eigenclass
apparently attached to ρ or ρτ .
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As we described in section 3 if either ρ or ρτ is attached to a cohomology
class with weight F (0, 0, 0) or F (2, 1, 0) then the other representation is as well.
Likewise if ρ or ρτ is attached to a cohomology class with weight F (1, 0, 0)
then the other representation is attached to a class with weight F (1, 1, 0), and
conversely. Our data bears this out in every case, so that for example when the
first entry in Table 3 indicates that the observed weights are F (1, 0, 0), F (1, 1, 0),
and F (2, 1, 0) we are saying that both ρ and ρτ appear for weight F (2, 1, 0), one
of ρ and ρτ appears for weight F (1, 0, 0), and the other appears for F (1, 1, 0).

We stress again that when we say a class appears to be attached to a Galois
representation, we mean that the corresponding Hecke and Frobenius polyno-
mials agree for ` ≤ 47.
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polynomial parameters decompositionat 2 decompositionat N N
3 parameter family (1)

5 -2,2,2 (6, 1), (1, 1) (2, 2), (1, 1), (1, 1), (1, 1) 251
6 1,-1,-8 (4, 1), (3, 1) (2, 1), (2, 1), (1, 2), (1, 1) 251
15 -1,1,1 (7, 1) (2, 2), (1, 1), (1, 1), (1, 1) 317
18 8,4,8 (2, 3), (1, 1) (2, 2), (1, 1), (1, 1), (1, 1) 383
24 -1,-1,-17 (7, 1) (2, 2), (1, 2), (1, 1) 443
27 -1,-1,-10 (4, 1), (3, 1) (2, 1), (2, 1), (1, 1), (1, 1), (1, 1) 487
31 4,4,-16 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 499
32 2,2,4 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 499

3 parameter family (2)
12 2,-2,4 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 313
13 2,-2,-4 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 313
14 -2,1,-1 (7, 1) (2, 1), (2, 1), (1, 2), (1, 1) 317
19 -3,-1,-4 (4, 1), (1, 3) (2, 1), (2, 1), (1, 2), (1, 1) 383
22 4,-2,4 (4, 1), (2, 1), (1, 1) (2, 1), (2, 1), (1, 1), (1, 1), (1, 1) 443
23 2,-1,1 (7, 1) (2, 2), (1, 2), (1, 1) 443
25 0,-1,7 (7, 1) (2, 1), (2, 1), (1, 2), (1, 1) 457
29 1,-2,4 (4, 1), (3, 1) (2, 2), (1, 2), (1, 1) 491
30 -1,1,1 (6, 1), (1, 1) (2, 2), (1, 2), (1, 1) 491

4 parameter family
1 -4,0,1,20 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 181
2 4,0,1,-2 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 181
3 -1,-4,2,2 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 227
4 -4,-4,-2,0 (4, 1), (2, 1), (1, 1) (2, 2), (1, 1), (1, 1), (1, 1) 239
7 -4,0,2,4 (4, 1), (2, 1), (1, 1) (2, 1), (2, 1), (1, 2), (1, 1) 257
8 -2,0,1,-2 (4, 1), (2, 1), (1, 1) (2, 2), (1, 1), (1, 1), (1, 1) 257
9 -4,0,2,-4 (4, 1), (3, 1) (2, 2), (1, 2), (1, 1) 277
10 -2,0,1,0 (6, 1), (1, 1) (2, 2), (1, 2), (1, 1) 277
11 -2,-4,2,8 (4, 1), (2, 1), (1, 1) (2, 2), (1, 2), (1, 1) 307
16 -4,0,1,12 (6, 1), (1, 1) (2, 1), (2, 1), (1, 2), (1, 1) 331
17 -1,-4,1,4 (4, 1), (3, 1) (2, 2), (1, 1), (1, 1), (1, 1) 331
20 -4,8,4,-16 (4, 1), (2, 1), (1, 1) (2, 1), (2, 1), (1, 1), (1, 1), (1, 1) 389
21 1,2,2,17 (4, 1), (2, 1), (1, 1) (2, 1), (2, 1), (1, 2), (1, 1) 421
26 -2,0,1,8 (6, 1), (1, 1) (2, 1), (2, 1), (1, 2), (1, 1) 461
28 -8,0,4,16 (6, 1), (1, 1) (2, 1), (2, 1), (1, 1), (1, 1), (1, 1) 487

Table 1: One polynomial for each distinct septic subfield, keyed by number to
the polynomials listed in Table 2. The families are listed in the order they
appear in [6], the numberings to distinguish between the three parameter

families being our own. Polynomials 33-39 were provided by the referee and do
not appear in this table.
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polynomial field discriminant N

1 x7 − x6 − 4x5 + 6x4 − 2x3 +−6x2 + 8x− 4 212 ∗ 1812 181
2 x7 − x6 − 2x5 − 2x4 + x3 + 3x2 + 6x + 2 " 181
3 x7 − x6 − 4x5 + 4x4 − x3 + x2 + 6x + 2 214 ∗ 2272 227
4 x7 − 3x6 + 12x4 − 15x3 − 7x2 + 24x− 8 212 ∗ 2392 239
5 x7 − 2x6 − 3x5 + 10x4 − 9x3 + 2x2 + 5x− 2 210 ∗ 2512 251
6 x7 − 3x6 + x5 + 3x4 − 2x3 + 2x2 − 2x− 2 " 251
7 x7 − x6 + x5 + 11x4 − 24x3 + 32x2 − 20x + 4 214 ∗ 2572 257
8 x7 − x6 − 5x5 + 9x4 + 5x3 − 21x2 + 3x + 1 " 257
9 x7 − x6 − 5x5 + 7x4 − 7x3 + 3x2 − x− 1 210 ∗ 2772 277
10 x7 − 3x6 + 4x5 − 2x4 − 8x3 + 16x2 + 2x− 2 " 277
11 x7 − 3x6 + 2x5 − 6x4 − 3x3 − 3x2 − 6x− 2 212 ∗ 3072 307
12 x7 − 3x6 + 6x5 − 14x4 + 13x3 − 15x2 + 24x− 4 214 ∗ 3132 313
13 x7 − 3x6 + 6x5 − 6x4 − 11x3 + 9x2 + 16x− 4 " 313
14 x7 − 2x6 + 2x4 − 2x3 + 2x2 − 2 26 ∗ 3172 317
15 x7 − 3x6 + 3x5 − x4 − 5x3 + 5x2 + 3x− 1 " 317
16 x7 − x6 − 4x5 + 6x4 − 8x2 + 6x− 2 210 ∗ 3312 331
17 x7 − 2x6 + 2x5 − 2x4 − 2x3 + 4x2 − 4x− 4 " 331
18 x7 − x6 + 2x5 + 2x4 − 5x3 + 7x2 − 5x + 1 26 ∗ 3832 383
19 x7 − x6 − x5 − 5x4 + 2x3 + 4x2 + 6x + 2 " 383
20 x7 − 2x6 + x5 − 8x3 + 12x2 − 14x + 16 212 ∗ 3892 389
21 x7 − x6 + 2x5 − 11x3 + 7x2 − 16x + 2 212 ∗ 4212 421
22 x7 − 3x6 − 2x5 + 14x4 − 7x3 − 15x2 + 6x + 10 212 ∗ 4432 443
23 x7 − 3x6 + 3x5 + x4 − 3x3 + x2 − x− 1 26 ∗ 4432 443
24 x7 − 3x6 + x5 + 3x4 − x3 + x2 − 3x− 1 " 443
25 x7 − 2x6 − 2x5 + 6x4 − 4x3 − 2x2 + 4x− 2 26 ∗ 4572 457
26 x7 − x6 − 5x5 + 9x4 − 5x3 − 11x2 + 13x− 9 210 ∗ 4612 461
27 x7 − 3x6 − x5 + 9x4 − 2x3 − 10x2 + 2x + 2 210 ∗ 4872 487
28 x7 − 3x5 − 8x4 + 11x3 + 12x2 − 15x− 8 " 487
29 x7 − 3x6 − x5 + 9x4 − 12x2 + 4 26 ∗ 4912 491
30 x7 − 3x6 + 7x5 − 5x4 + x3 + 7x2 − 3x− 1 " 491
31 x7 − x6 − 6x5 + 18x4 − 34x3 + 42x2 − 28x + 4 214 ∗ 4992 499
32 x7 + 2x6 − 10x5 − 12x4 + 34x3 + 4x2 − 28x + 8 " 499
33 x7 − 3x6 + 10x5 − 10x4 + 7x3 − 13x2 + 4 214 ∗ 52 ∗ 672 335
34 x7 − 7x5 − 2x4 + 20x3 − 4x2 − 18x + 4 212 ∗ 3532 353
35 x7 − 3x6 − 4x5 + 20x4 − 10x3 − 26x2 + 16x + 16 214 ∗ 3832 383
36 x7 − 3x6 − 3x5 + 9x4 + 4x3 − 8x2 + 12x + 20 212 ∗ 4012 401
37 x7 − x6 − 5x5 + 9x4 + x3 − 17x2 + 7x− 3 214 ∗ 72 ∗ 612 427
38 x7 − 3x6 − 4x5 + 28x4 − 15x3 − 35x2 + 38x− 2 214 ∗ 4312 431
39 x7 − x6 − 2x5 + 2x4 − 6x3 − 2x2 + 20x− 4 214 ∗ 4872 487

Table 2: One polynomial for each distinct septic subfield that met our criteria,
along with the field discriminant and level.
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polynomial level niveau I2 peu/très observed weights
2 181 1 D4 pt b, c, d
3 227 1 D4 tt d
4 239 1 D4 pt b, c, d
5 251 2 A4 − a, b, c, d
8 257 1 D4 tt d
10 277 2 A4 − a, b, c, d
11 307 1 D4 pt b, c, d
12 313 1 C4 t d
15 317 3 C7 − a, b, c, d
17 331 2 A4 − a, b, c, d
19 383 1 V4 pp a, b, c, d
20 389 1 D4 pt b, c, d
21 421 1 D4 pt b, c, d
22 443 1 D4 pt b, c, d
23 443 3 C7 − a, b, c, d
25 457 3 C7 − a, b, c, d
26 461 2 A4 − a, b, c, d
27 487 2 A4 − a, b, c, d
30 491 2 A4 − a, b, c, d
32 499 1 D4 tt d
33 335 1 D4 tt d
34 353 1 D4 pt b, c, d
35 383 1 D4 tt d
36 401 1 D4 pt b, c, d
37 427 1 C4 t d
38 431 1 D4 tt d
39 487 1 D4 tt d

Table 3: One polynomial for each distinct splitting field, keyed by number to
the polynomials listed in Table 2, along with the level, niveau, inertia at 2, the
peu ramifée/très ramifée classification of ramification at 2, and the observed

weights. The peu ramifée/très ramifée ramification possibilities are
abbreviated as: pp = peu-peu, pt = peu-très, t = très, tt = très-très. The

weights are abbreviated as follows: a = F (0, 0, 0), b = F (1, 0, 0), c = F (1, 1, 0),
d = F (2, 1, 0)
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Gal(Q/Q). Duke Math. J., 54(1):179–230, 1987.

[8] John Jones and David Roberts. Web page located at
http://hobbes.la.asu.edu/LocalFields.

16


