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Abstract

This paper, which is largely expository in nature, seeks to illustrate some of

the advances that have been made on the trace formula in the past fifteen

years. We review the basic theory of the trace formula, then introduce some

ideas of Arthur and Kottwitz that allow one to calculate the Euler character-

istic of the S-cohomology of the discrete spectrum. This Euler characteristic

is first expressed as a trace of a certain test function on the space of auto-

morphic forms, and then, by the stable trace formula, is converted into a

sum of orbital integrals. A result on global measures allows us to calculate

these integrals in terms of the values of certain Artin L-functions at negative

integers.

Our intention is to show how advances in the theory have allowed one to

render such calculations completely explicit. As a byproduct of this calcu-

lation, we obtain the existence of automorphic representations with certain

local behavior at the places in S.
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1. Introduction

For a smooth, compactly supported function f on R, with Fourier transform

f̂ , the Poisson summation formula asserts that

∑

n∈Z

f(n) =
∑

n∈Z

f̂(n).

This formula has had broad application in many areas of mathematics. In

number theory, for instance, it can be used to prove the modularity of the

theta function of a Euclidean lattice.

We can give a representation theoretic interpretation of the right hand

side of the summation formula. The function f acts on the Hilbert space

L2(Z\R) by the linear operator sending F ∈ L2(Z\R) to

(R(f)F )(x) =

∫

R

f(y)F (x+ y)dy.

This is just an averaging of the right regular representation of the additive

group R on L2(Z\R). Now L2(Z\R) is well understood as a representation

of R: it has a Hilbert space basis consisting of the functions vn(x) = e−inx,

and y ∈ R acts on vn by multiplication by the character e−iny. Then we see

that

(R(f)vn)(x) =

∫

R

f(y)e−in(x+y)dy = e−inx

∫

R

f(y)e−inydy = f̂(n)vn(x).

Hence f̂(n) is the eigenvalue of R(f) on the vector vn, and the right-hand

side of the Poisson summation formula is the trace of R(f) on L2(Z\R). On

the other hand, the left-hand side of the formula is a sum over the elements

(or conjugacy classes) of the discrete group Z of R.
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In his 1956 paper [23], Selberg introduced his trace formula for SL(2),

which gives a non-abelian generalization of the Poisson summation formula.

We’ll start by looking at the trace formula in an abstract setting.

Let G be a locally compact topological group, and Γ a subgroup of G

which is both discrete and co-compact. In the case of the Poisson summation

formula, G is the additive group of real numbers and Γ is the subgroup of

integers. A Haar measure dg on G induces a measure on the coset space Γ\G,

taking counting measure on Γ. Again, in the case of Poisson summation we

take dg to be Lebesgue measure and the induced measure on Γ\G ∼= S1 is

then the Haar measure on S1 giving the whole space volume 1.

Now right translation gives a representation of G on L2(Γ\G):

gF (x) = F (xg)

for g ∈ G and F ∈ L2(Γ\G). If f is a compactly supported measurable func-

tion on G, then we can average this representation according to the measure

ϕ = f dg. So ϕ gives an endomorphism of the Hilbert space L2(Γ\G, dg),

mapping F to the function

ϕF (x) =

∫

G

F (xg) f(g)dg.

We assume further that f satisfies a regularity condition. If G is a Lie group,

this regularity condition is exactly that f be infinitely differentiable. In

general, the regularity condition is that given by Bruhat in [6].
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We compute, using Fubini’s theorem and the Γ-invariance of F :

∫

G

F (xg)f(g)dg =

∫

Γ\G

∑

γ∈Γ

F (γh)f(x−1γh)dh

=

∫

Γ\G

F (h)
∑

γ∈Γ

f(x−1γh)dh.

Thus we see that the endomorphism ϕ is given by integration against the

compact kernel

K(x, g) =
∑

γ∈Γ

f(x−1γg).

For fixed x the sum is finite, as Γ is discrete and f has compact support.

Note that K is a function on Γ\G × Γ\G. Since the kernel is compact, the

endomorphism ϕ has a trace, namely,

Tr(ϕ) =

∫

Γ\G

K(g, g)dg.

Note that K(g, g) =
∑

γ∈Γ f(g−1γg). We would like to exchange the order

of the sum and the integral in our formula for Tr(ϕ). This motivates the

following definition:

For γ in Γ, let Γγ be its centralizer in Γ and let Gγ be its centralizer in G.

Define the orbital integral

Oγ(ϕ, dgγ) =

∫

Gγ\G

f(g−1γg)
dg

dgγ
.

This depends on the choice of a Haar measure dgγ on Gγ . The orbital measure

dgγ(ϕ) = Oγ(ϕ, dgγ) · dgγ
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on Gγ is invariant and depends only on γ.

We then have

Tr(ϕ|L2(Γ\G)) =
∑

γ

∫

Γγ\Gγ

dgγ(ϕ)

=
∑

γ

∫

Γγ\Gγ

dgγ ·Oγ(ϕ, dgγ),

where γ runs through a set of representatives of the conjugacy classes of Γ.

The sum, moreover, is absolutely convergent [19].

On the other hand, since Γ\G is compact, the representation L2(Γ\G) of

G is completely reducible. That is,

L2(Γ\G) ∼=
⊕

π

mππ,

where the π are irreducible representations of G. Then ϕ acts on each π,

again by averaging. The trace of ϕ on L2(Γ\G) is then the sum of the traces

on the π’s and thus we get the abstract trace formula

∑

γ

∫

Γγ\Gγ

dgγ ·Oγ(ϕ, dgγ) = Tr(ϕ|L2(Γ\G)) =
∑

π

mπTrπ(V ).

The left hand side of the trace formula is called the geometric side, as it

involves the geometry of integrals over conjugacy classes, whereas the right

hand side of the trace formula is called the spectral side, as it involves the

spectral decomposition of the Hilbert space as a representation of G.

One wants to apply the trace formula to situations where the quotient

Γ\G is not compact. Quite a number of difficulties arise here, not the least
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of which is that the operator R(f) is no longer of trace class. In his 1956

paper, Selberg employed the theory of Eisenstein series to study the case

G = SL2(R), Γ = SL2(Z). This is directly related to the study of modular

forms on the upper half plane.

In a more modern language, we let A be the ring of adèles of Q and

consider G = GL2(A) and Γ = GL2(Q). Then the representation V =

L2(GL2(Q)\GL2(A)) of GL2(A) encodes information about classical modular

forms (holomorphic or not) on the upper half plane. Indeed, knowing the

irreducible constituents of V tells us the dimensions of the spaces of classical

cusp forms, as well their Hecke eigenvalues.

More generally, if G is any reductive algebraic group over Q we can again

look at L2(G(Q)\G(A)). This representation again encodes important arith-

metic information. Since G(Q)\G(A) need not be compact, the version of

the trace formula given above does not always apply. However, if we restrict

our attention to a suitable subspace of V and to suitable ϕ then results of

Arthur give a version of the trace formula that does apply. In sections 2 and

3 we will present a simple version of Arthur’s trace formula. For a discus-

sion of Arthur’s proof of this formula we refer the reader to the books by

Gelbart [11] or Shokranian [24].

Our goal for using the trace formula here will be to explicitly determine

multiplicities mπ appearing on the spectral side. To do this we will have to

pick good test functions f that will let us isolate certain π. We discuss the

choice of these functions in section 4.
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Another important application of the trace formula is the comparison of

the spectra of two different groups. Langlands’s theory of functoriality pre-

dicts that a map between the L-groups of two groups G1 and G2 allows one to

transfer certain automorphic representations between the groups. A major

tool in proving instances of this functoriality is to choose suitable test func-

tions f1 and f2 on G1, G2 as above and then to prove the the corresponding

geometric sides of the trace formula agree. We will not go into this matter

here; for the first important case, the reader could consult [15].

Even Arthur’s version of the trace formula we give in section 2 is still too

difficult to use, since it requires an enumeration of the conjugacy classes in

G(Q). In section 5 we discuss the “stabilization” by Kottwitz that rewrites

the trace formula in terms of stable (which in our case is the same as G(Q))

conjugacy rather than G(Q) conjugacy. In section 6 we explain how to com-

pare the various local measures that come up in the orbital integrals with

a global measure so that we can make use of special values of L-series. In

sections 7 and 8 we relate the results of our trace formula calculations to

modular forms. There is an amusing subtlety that arises here: our final

version of the trace formula contains some quantities whose computation is

quite difficult. We use our modular form calculations to obtain these values.

Finally, in chapter 9 we make some conjectures related to our computa-

tions.

We would like to thank Jim Arthur and Bob Kottwitz, who explained im-

portant points of their work; they have since gone far beyond the techniques
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used here. We would also like to thank Wee-Teck Gan, Joshua Lansky, and

Seth Padowitz for their help. The first author would like to thank his hosts at

the IMS of the National University of Singapore, where a preliminary version

of this paper was written.
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2. The trace formula

Let G be a simply connected, semi-simple algebraic group defined over Q.

We will keep this condition on G throughout, unless otherwise noted. For

example, G could be SL2, the group Sp4 of 4-by-4 symplectic matrices, or

the group G2 of automorphisms of the octonions.

Let A be the ring of adèles of Q. The group G(A) is locally compact and

unimodular; let dg be a fixed Haar measure on G(A). The subgroup G(Q)

is discrete in G(A), so dg induces a measure on the quotient G(Q)\G(A),

which has finite volume [4].

The group G(A) acts unitarily, by right translation, on the Hilbert space

L2 = L2(G(Q)\G(A), dg).

If G(R) is compact, then G(Q)\G(A) is compact and the abstract trace

formula as presented in the introduction applies. If, as is the case for G =

Sp4, G(R) is not compact, then we need instead to look at a subspace of

L2(G(Q)\G(A), dg).

Let

L = L2
disc ⊂ L2

be the sum of all irreducible G(A)-subspaces of L2. L is called the discrete

spectrum and decomposes as a Hilbert direct sum of irreducible unitary rep-

resentations π of G(A), with finite multiplicities m(π):

L = ⊕ m(π)π.
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Each irreducible π is a restricted tensor product

π = ⊗ πv,

with πv an irreducible, unitary representation of G(Qv) [10].

We need a modification of the trace formula which gives the trace of ϕ

only on the discrete spectrum L. This modification will exist for measures

ϕ = Πϕv on G(A), satisfying certain local conditions. In order to state these

local conditions, we will first need a few definitions.

If ϕ = ϕv is a smooth, compactly supported measure on G(Qv), and π is

an irreducible, complex representation of G(Qv), then the endomorphism

ϕ(w) =

∫

G(Qv)

g · w dϕ(g)

of π has a trace, which we denote Tr(ϕ|π). Similarly, if γ is a conjugacy class

in G(Qv), we define the orbital integral

Oγ(ϕ, dgγ) =

∫

Gγ(Qv)\G(Qv)

f(g−1γg)
dg

dgγ

,

which depends on the choice of an invariant measure dgγ on the centralizer

Gγ(Qv). For the convergence of this integral, see [22]. The orbital measure

dgγ(ϕ) = Oγ(ϕ, dgγ) · dgγ

on Gγ is again well-defined, independent of the choice of dgγ.

Before stating the trace formula in this context we note that when G(R)

is compact, G is anisotropic over Q (that is G does not contain a split torus
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over Q). It follows that every conjugacy class in G(Q) is semi-simple and

elliptic over Q. (Recall that γ is elliptic over F if it is contained in a maximal

anisotropic torus T of G over F . For example, an element of SL2(R) is elliptic

over R if and only if its eigenvalues both have complex absolute value 1. That

is the case if and only if its trace has absolute value less than or equal to 2.)

On the other hand, if G(R) is not compact, G(Q) will contain elements that

are not elliptic semi-simple. The geometric side of Arthur’s trace formula,

however, is still a sum of orbital integrals only over the elliptic semi-simple

conjugacy classes of G(Q).

Proposition (Arthur). Assume that the smooth, compactly supported

measure ϕ = Πϕv on G(A) satisfies the following three local conditions:

1. Tr(ϕ∞|π∞) = 0, unless the infinitesimal character of π∞ is regular.

2. dgγ∞(ϕ∞) = 0, unless the class γ∞ is both elliptic and semi-simple.

3. dgγp
(ϕp) = 0, unless the class γp is both elliptic and semi-simple, for

some finite p.

Then ϕ is of trace class on the discrete spectrum L, and

Tr(ϕ|L) =
∑

γ

∫

Gγ(Q)\Gγ(A)

dgγ(ϕ)

=
∑

γ

∫

Gγ(Q)\Gγ(A)

dgγ ·Oγ(ϕ, dgγ)

where the sum is taken over representatives for the elliptic, semi-simple con-
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jugacy classes in G(Q), only finitely many of which have a non-zero orbital

integral for ϕ.

We now sketch the proof, which follows from Arthur’s general theory.

The hypotheses 2) and 3) above imply that the contributions of non-elliptic

terms to Arthur’s trace formula all vanish. Thus the geometric side I(f)

of the trace formula is given by the sum of orbital integrals over elliptic,

semi-simple conjugacy classes in G(Q):

I(f) =
∑

γ

τ(Gγ)Oγ(f).

Here we have used the fact that G is simply connected, so by a result of

Steinberg, Gγ is connected. This allows us to identify Arthur’s weighting

factor aG with with the Tamagawa number τ(Gγ).

The spectral side J(f) of trace formula is given by a sum over conjugacy

classes of Levi subgroups M of G. However, if M 6= G, each of these terms

will be a linear combination traces of representations whose real component

has singular infinitesimal character. Since hypothesis 1) implies that these

terms vanish for the test measure ϕ, one is left with the term for M = G,

which is just

J(f) = Tr(ϕ|L).
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3. The cohomology of the discrete spectrum (cf. [5])

We are going to use the trace formula to compute a certain Euler characteris-

tic on L⊗V for an irreducible, finite-dimensional representation V of the real

Lie group G(R). We’ll see in chapter 7 that this is tantamount to counting

the number of irreducible subrepresentations π = ⊗πv of L satisfying certain

prescribed conditions on the πv.

We say a group G is split at the prime p if G splits over Qp, that is,

if G(Qp) contains a split maximal torus. The group G need not be split

at every prime p. Indeed if, for example, G = SU3(Q(i)/Q) is the special

unitary group in three variables attached to the extension Q(i)/Q then G is

split only at those primes congruent to 1 to mod 4. However, for almost all

primes p, G must split over an unramified extension of Qp and must contain

a Borel subgroup defined over Qp [26, 3.9.1]. If p is such a prime, we say G

is unramified at p.

If S is a finite set of places of Q which contains the real place and all

finite primes p where G is ramified, we may choose an integral model G for

G over the ring ZS of S-integers, with G having good reduction at all primes

p outside of S. For such a good prime p, G(Zp) is a hyperspecial maximal

compact subgroup of G(Qp) = G(Qp) (see [26, 1.10] for the definition of

hyperspecial). The product

GS(A) =
∏

v∈S

G(Qv) ×
∏

p/∈S

G(Zp)
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is locally compact, and is open in G(A). Moreover,

G(A) = lim
−→
S

GS(A).

Fix such a finite set S and an integral model G for G, as well as an

irreducible, finite-dimensional representation V of the real Lie group G(R),

such that V has trivial central character. The tensor product L ⊗ V is a

continuous, complex representation of the locally compact group GS(A), and

we may define the continuous cohomology groups

H i(GS(A), L⊗ V )

following [5, Chapter IX]. These complex vector spaces are finite dimensional,

and are zero for i� 0. Indeed, the subgroup

K = G(ẐS) =
∏

p/∈S

G(Zp)

of GS(A) is compact, so only contributes to H0, and we find

H i(GS(A), L⊗ V ) ' H i

(

∏

v∈S

G(Qv), L
G(ẐS) ⊗ V

)

,

by the Künneth formula. The local continuous cohomology groups are known

to be finite dimensional [5, Prop. X.6.3].

We define the Euler characteristic of the discrete spectrum tensored with

V by the formula

χ = χ(G, S, V ) =
∑

i≥0

(−1)i dim H i(GS(A), L⊗ V ).

Our goal is to give an explicit formula for χ, under the following two hy-

potheses:
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• Card(S) ≥ 2, so S contains a finite prime,

• G(R) contains a maximal compact torus.

The first hypothesis is essential, to allow us to use the version of the trace

formula in the previous section, as well as results of Kottwitz to rewrite the

geometric side in terms of stable conjuagacy rather than rational conjugacy.

In our setting, two elements will be stably conjugate if and only if they are

conjugate over G(Q). The second hypothesis is not essential, but one finds

that χ = 0 for local reasons if it is not met.

When G(R) contains a maximal compact torus T , we let W c = N(T )/T

be its Weyl group in G(R) (the compact Weyl group) and W = N(TC)/TC

be its Weyl group in G(C). We will see that

χ = (W : W c) · χ∗

with χ∗ equal to the Euler characteristic χ(G∗, S, V ) of any inner form G∗ of

G which is compact over R and unramified outside of S. (A form G∗ of G

is called an inner form if the actions of Gal(Q/Q) on the Dynkin diagrams

of G and G∗ are the same.) Our formula will express the integer χ∗ as a

sum of rational numbers. The terms in the sum will be indexed by the

rational stable torsion conjugacy classes in G (or equivalently, in G∗). If S is

sufficiently large (for example, if S contains all of the torsion primes for G)

the global contribution of each torsion class γ to the sum will be

1

2`
LS(Mγ) · Tr(γ|V ).
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Here ` = dim(T ) is the rank of G over C, and Mγ is the Artin-Tate motive

of rank l which is associated to the centralizer Gγ in [12]. This motive is

well-defined by the stable class of γ, as Gγ is determined up to inner twisting

over Q. The term LS(Mγ) is the value of the Artin L-function of Mγ , with

the Euler factors at S removed, at the point s = 0. This special value is

known to be a rational number, by results of Siegel [25].
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4. A test function to compute χ(G, S, V )

To use the trace formula to compute

χ(G, S, V ) = χ(GS(A), L⊗ V ),

we will construct a measure ϕ on G(A) such that

χ(GS(A), L⊗ V ) = Tr(ϕ|L).

To this end, write L as a Hilbert direct sum

L = ⊕̂ m(π)π

with finite multiplicities. Then

χ(GS(A), L⊗ V ) =
∑

m(π)χ(GS(A), π ⊗ V ).

The group GS(A) is a direct product, and the representation π⊗V of GS(A)

is a restricted tensor product: π = ⊗ πv. Since the Euler characteristic is

multiplicative, we have

χ(GS(A), π ⊗ V ) = χ(G(R), π∞ ⊗ V ) ·
∏

p∈S

χ(G(Qp), πp)
∏

p/∈S

χ(G(Zp), πp).

The term χ(G(Zp), πp) = dim π
G(Zp)
p is either 0 or 1, so the product of Euler

characteristics is either 0 or finite.

Since Tr(ϕ|π) =
∏

Tr(ϕv|πv), our task is to find local measures ϕv, such
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that for all irreducible representations πv of G(Qv):

Tr(ϕ∞|π∞) = χ(G(R), π∞ ⊗ V )

Tr(ϕp|πp) = χ(G(Qp), πp) p ∈ S

Tr(ϕp|πp) = χ(G(Zp), πp) p /∈ S.

Then we will have

χ(GS(A), π ⊗ V ) = Tr(ϕ|π) for all irreducible π, and hence

χ(GS(A), L⊗ V ) = Tr(ϕ|L).

Of course, to calculate Tr(ϕ|L) using the trace formula, we will have to

verify that ϕ∞ and ϕp satisfy the local conditions of the Proposition. We

will also need to calculate orbital measures dgγ(ϕ) of the test measure ϕ. For

this last calculation we will ultimately use the fact that the global orbital

measure factors as a product of local orbital measures,

dgγ(ϕ) =
∏

v

dgγ(ϕv).

However, as we’ll see in sections 5 and 6, some complications will arise from

the fact that the natural measure to take on Gγ(A) doesn’t factor easily as

a product of local measures. In the meantime, we will carry out the local

computations below.

We now proceed to construct the desired local measures ϕv. At primes p

which are not in S, the measure

ϕp =
ch(G(Zp))
∫

G(Zp)

dgp

· dgp
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has the desired property, where ch is the characteristic function of the open

compact subset G(Zp). Indeed, the endomorphism ϕp of πp is

ϕp(w) =

∫

G(Qp)

g(w) ϕ(g)

=

∫

G(Zp)

g(w) dgp /
∫

G(Zp)

dgp.

This is just the projection of w to the G(Zp)–fixed space in πp, so

Tr(ϕp|πp) = dim πG(Zp)
p .

The calculation of the orbital integrals of the local measure ϕp specified

above is a fundamental problem in local harmonic analysis. Clearly this

orbital integral is zero unless the conjugacy class C(γ) of γ in G(Qp) meets

G(Zp). In this case, we say γ is integral. There are finitely many G(Zp)

orbits on C(γ)∩G(Zp), and their stabilizers are open compact subgroups Ki

of Gγ(Qp). The orbital measure is then

dgγ(ϕp) =
∑

i

1
∫

Ki

dgγ

· dgγ.

We say an integral, semi-simple class γ has good reduction (mod p) if, for

every root α of G, the p-integer (α(γ) − 1) is either 0 or a unit. In other

words, the class of γ has good reduction if it has no excess intersection

(mod p) with the discriminant divisor, in the variety of conjugacy classes.

In this case, Kottwitz has shown [17, Prop. 7.1] that the group scheme Gγ

over Zp has good reduction (mod p), so Gγ(Zp) is a hyperspecial maximal
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compact subgroup in Gγ(Qp). Moreover, if γ has good reduction (mod p),

the group G(Zp) has a single orbit on C(γ) ∩G(Zp), with stabilizer Gγ(Zp).

Hence, in this case, dgγ(ϕp) is the unique Haar measure with

∫

Gγ(Zp)

dgγ(ϕp) = 1.

If the class of γ has bad reduction (mod p), the calculation is much more

difficult. We discuss this further in section 6.

At finite primes p in S, we need a locally constant, compactly supported

measure ϕp such that

Tr(ϕp|πp) =
∑

(−1)i dim H i(G(Qp), πp).

Let F be a facet of maximal dimension in the building of G(Qp), and let

Fj be the faces of F . The dimension of F is the rank ` of G over Qp. Let

Kj ⊂ G(Qp) be the parahoric subgroup fixing the facet Fj . Then Kottwitz

has shown that the measure

ϕp =
∑

j

(−1)dim Fj ·
ch(Kj)
∫

Kj
dgp

· dgp

has the desired traces. In particular, we have

∑

i

(−1)i dim H i(G(Qp), πp) =
∑

j

(−1)dim Fj dim(πKj
p ).

For example, the Steinberg representation St of G(Qp) has a line fixed

by the Iwahori subgroup K fixing F pointwise, and no fixed vectors under

any larger parahoric subgroup. Hence χ(St) = (−1)`; this agrees with the
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calculation of H i(G(Qp), St) by Casselman, as the cohomology is zero for

i 6= `, and one-dimensional for i = `.

Kottwitz also calculated the orbital integrals of ϕp. For γ = 1, we have

dgγ(ϕp) =
∑

j

(−1)dim Fj ·
1

∫

Kj

dgp

· dgp,

which is Serre’s formula for Euler-Poincaré measure on G(Qp). This is the

unique invariant measure µ such that

∫

Γ\G(Qp)

dµ = χ(Γ) =
∑

i

(−1)i dim H i(Γ,Q)

for each discrete, co-compact, torsion-free subgroup Γ. More generally, Kot-

twitz has shown that for any γ

dgγ(ϕp) = dµγ = Euler-Poincaré measure on Gγ(Qp).

This measure is zero, unless γ is elliptic and semi-simple.

At the real place, we need to construct a smooth compactly supported

measure ϕ∞ on G(R) such that

Tr(ϕ∞|π∞) =
∑

(−1)i dim H i(G(R), π∞ ⊗ V ).

When G(R) is compact, we have H i = 0 for i ≥ 1 and the Euler characteristic

is equal to

dim(π∞ ⊗ V )G(R).

In this case, we may take the test measure

ϕ∞ =
Tr(g∞|V )
∫

G(R)

dg∞
· dg∞.
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Indeed, the endomorphism ϕ∞ of π∞ is just 1
dim V ∗

times the projection onto

the V ∗-isotypical space. In the case when G(R) is not compact, a suitable

measure ϕ was constructed by Clozel and Delorme [9], who also calculated

its orbital integrals. We have

dgγ(ϕ∞) = Tr(γ|V ) · Euler-Poincaré measure on Gγ(R).

This is zero, unless γ is semi-simple and elliptic. Also, since any π∞ with

cohomology has the same infinitesimal character as V ∗, which is regular, we

have Tr(ϕ∞|π∞) = 0 unless π∞ has a regular infinitesimal character.

Since #S ≥ 2, with these choices of ϕv the test measure ϕ =
∏

ϕv = f ·dg

satisfies all the conditions of the Proposition. Hence

χ(G, S, V ) = Tr(ϕ|L) =
∑

γ

∫

Gγ(Q)\Gγ (A)

dgγ ·

∫

Gγ(A)\G(A)

f(g−1γg)
dg

dgγ
.

where again the sum is taken over representatives for the elliptic, semi-simple

conjugacy class in G(Q). Moreover, since the support of ϕp is the union of

compact open subgroups for all p, the class γ must be lie in a compact

subgroup of each G(Qp) to contribute a non-vanishing orbital integral. Since

γ is also elliptic over R, it is contained in a compact subgroup K of G(A).

But K ∩G(Q) is finite, so γ is a torsion conjugacy class. Finally, if γ is not

elliptic at some finite prime p in S, then we’ve seen that dgγ(ϕp) is zero, and

hence γ doesn’t contribute to the sum. Hence the above sum is over torsion

classes which are also elliptic at the finite primes in S.

We now fix this choice of test measure ϕ for the rest of the paper.
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5. The stable trace formula

The problem in using the trace formula as just obtained to calculate χ(G, S,W )

is that semi-simple conjugacy classes γ in G(Q) are difficult to describe. For

example, when G = SL2, there are infinitely many conjugacy classes of order

4, all conjugate over Q. Using the Euler-Poincaré test measure ϕp, Kottwitz

was able to convert the above expression into a sum over stable conjugacy

classes in the quasi-split inner form G′ of G over Q. (A group over Q is called

quasi-split if it contains a Borel subgroup defined over Q. Every group G

has a unique quasi-split inner form.) Recall that two semi-simple elements

of G′(Q) are stably conjugate if and only if they are conjugate in G′(Q) since

G′ is simply-connected.

We describe Kottwitz’s formula below, and use it to compute χ in the

next section. To carry out the stabilization, Kottwitz takes dgγ to be the

Tamagawa measure on the adèlic group Gγ(A), so

∫

Gγ(Q)\Gγ (A)

dgγ = τ(Gγ)

is, by definition, the Tamagawa number. We henceforth fix this choice of

dgγ. For a discussion of Tamagawa measure see [8]. The trace formula then

reads

χ(G, S, V ) = Tr(ϕ|L) =
∑

γ

τ(Gγ)O(ϕ, dgγ).

The sum is over torsion classes γ of G(Q) which are elliptic in G(Qv) for all

v ∈ S.
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Let T denote a set of representatives for the (finitely many) stable, torsion

conjugacy classes in G′(Q). Fix an inner twisting ψ : G′ → G over Q. The

geometric side of the stable trace formula will be a sum over those γ in G(A)

that, for some t ∈ T , are conjugate to ψ(t) in G(A). For each such γ we have

the adèlic centralizer Gγ(A), but in general Gγ is not defined over Q. If γ is

conjugate to an element in G(Q), then Gγ(A) contains the discrete subgroup

Gγ(Q) and so we have the usual notion of Tamagawa measure on Gγ(A).

Even if Gγ is not defined over Q, we can still define Tamagawa measure

dgγ on Gγ(A), using the inner twisting. Indeed, let dg′t be Tamagawa measure

on G′
t(A), and fix a product decomposition: dg′t = ⊗(dg′t)v. For each place v,

Gγv
is an inner twist of G′

tv over Qv, so we may transfer the measure (dg′t)v

to a measure (dg)γv
on Gγv

(Qv). We then define

dgγ = ⊗ (dg)γv
.

If γ is in G(Q), this agrees with usual Tamagawa measure, and we can define

τ(Gγ). In general, there is no Tamagawa number, but we can still define the

adèlic orbital integral

Oγ(ϕ, dgγ) =

∫

Gγ(A)\G(A)

f(g−1γg)
dg

dgγ

.

We may also attach a sign e(γ) = ±1 to the adèlic class γ, by the formula

e(γ) =
∏

v

e(Gγv
),

where the local invariants e(Gγv
) are defined in [16]. If γ is inG(Q), e(γ) = +1.
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Proposition (Kottwitz).

χ(G, S, V ) =
∑

T

∑

γ

e(γ)Oγ(ϕ, dgγ),

where the first sum is over representatives t of the stable torsion classes in

G′(Q), and the second is over representatives γ of the G(A)-conjugacy classes

G(A) which are conjugate to ψ(t) in G(A).

We sketch the proof. As usual, there are an infinite number of γ in the

inner sum, but only finitely many have a non-zero orbital integral.

For each t, Kottwitz defines a finite abelian group <, and for γ ∈ G(A)

conjugate to ψ(t) in G(A) he defines an invariant obs(γ) in the dual of <.

This invariant gives an obstruction to the existence of an element of G(Q) in

the G(A)-conjugacy class of γ. He then [17, 9.6.5] writes the geometric side

of the trace formula as a triple sum

∑

T

∑

γ

∑

κ

〈obs(γ), κ〉e(γ)Oγ(ϕ, dgγ),

where κ runs over <.

Actually Kottwitz only states this triple sum formula for the contributions

of the non-central classes η ∈ G(Q). This restriction was needed at the time

since he used Weil’s conjecture on Tamagawa numbers forGη and he was only

assuming Weil’s conjecture for groups of smaller dimension than G. He later

used this formula to prove Weil conjecture [18, Thm. 3], and so his original

derivation gives the triple sum expansion of the entire geometric side.
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We switch the inner sums, and exploit the fact that ϕp is the Euler-

Poincaré function at a finite prime in S.

Then Kottwitz shows [18, pg. 641] that for κ 6= 1:

∑

γ

〈obs(γ), κ〉e(γ)Oγ(ϕ, dgγ) = 0.

Hence we obtain the simple stable formula in the proposition.
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6. A comparison of measures

The stable formula for χ(G, S, V ) is still not readily computable, as we have

only evaluated the local orbital measures for our test measure ϕ, while the

trace formula involves the global term Oγ(ϕ, dgγ). To convert Oγ(ϕ, dgγ) into

a product of local integrals, we need to express Tamagawa measure dgγ on

Gγ(A) as a product of local measures.

To do this, we use the results of [12]. Again let G′ be the quasi-split

inner form of G over Q with fixed inner twisting ψ over Q and let t ∈ G′(Q)

be a torsion element (in particular, an element appearing in the outer sum

of the stable trace formula). Let γ = (γv) ∈ G(A) be conjugate to ψ(t) in

G(A) (in particular, an element appearing in the inner sum of the stable

trace formula).

For v ∈ S, we let dµγv
be Euler-Poincaré measure on Gγv

(Qv). For p

not in S, the group G′
t is the quasi-split inner form of Gγp

over Qp, and we

let dµγp
be the measure on Gγp

(Qp) transferred from the Haar measure on

G′
t(Qp) which gives the connected component of a certain special compact

subgroup volume 1. This measure on Gγp
(Qp) is denoted L(M∨

Gγp
(1)) · |ωGγp

|

in [12, Sect. 4]. When Gγp
is unramified at p and Gγp

is a model over Zp with

good reduction, we have
∫

Gγp
(Zp)

dµγp
= 1. Hence we can form the product

measure dµγ = ⊗ dµγv
on Gγ(A).

The main global result of [12] then gives the ratio of measures on Gγ(A):

dµγ/dgγ = LS(Mt)/
∏

v∈S

e(γv)c(γv).
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Here LS(Mt) is the value of the Artin L-series of the motive of Gγ at s = 0,

which only depends on the stable class ψ(t) of γ, and the sign e(γv) =

e(Gγv
) = ±1 is the local invariant defined by Kottwitz [16]. The invariant

c(γv) is defined as follows.

For finite primes p in S,

c(γp) = #H1(Qp, Gγ).

This depends only on the stable class of ψ(tp) over Qp, and gives the number

of classes γp in the stable class (as H1(Qp, G) = 1).

At the real place, we have

c(γ∞) =
#H1(R, T )

# ker(H1(R, T ) → H1(R, Gγ))
,

where T ⊂ Gγ ⊂ G is a maximal anisotropic torus, so #H1(R, T ) = 2`, with

` = dim T .

We now replace the measure dg/dgγ on Gγ(A)\G(A) by the equivalent

term

dg/dµγ · LS(Mt)/
∏

v∈S

e(γv)c(γv).

This allows us to write the adèlic orbital integral as a product of local inte-

grals

e(γ)Oγ(ϕ, dgγ) = LS(Mt) ·
∏

v∈S

Oγv
(ϕv, dµγv

)/c(γv) ·
∏

p/∈S

Oγp
(ϕp, dµγp

)e(γp).

For a fixed t = (tv), each adèlic class γ in the stable class of ψ(t) is the

product of local classes γv in the stable classes of the ψ(tv). We define the
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local stable orbital integrals by

SOt(ϕv) =
∑

γv

e(γv)Oγv
(ϕv, dµγv

),

and for v ∈ S the modified local stable orbital integrals by

SO∗
t (ϕv) =

∑

γv

c(γv)
−1Oγv

(ϕv, dµγv
),

where the sums are taken over the finitely many classes γv in G(Qv) which

are in the stable class of ψ(tv) in G(Qv). If v /∈ S we let SO∗
t (ϕv) = SOt(ϕv).

Then summing over the classes γ in the stable class of ψ(t) we see

∑

γ

e(γ)Oγ(ϕ, dgγ) = LS(Mt)
∏

v

SO∗
t (ϕv),

and so

χ(G, S, V ) =
∑

T

LS(Mt) ·
∏

v

SO∗
t (ϕv).

We now turn to the evaluation of the stable local terms SO∗
t . Let v = p

be a finite prime in S. If γv is elliptic then we have Oγv
(ϕv, dµγv

) = 1. If

not, LS(Mt) = 0. The constant c(γv) = c(tv) is the number of local classes

in the stable class of ψ(tv). Hence either the contribution of the stable class

t is killed off by the LS(Mt) term, or SO∗
t (ϕv) = 1.

When v = ∞ and γv is elliptic, we have Oγv
(ϕv, dµγv

) = Tr(γv|V ). This

depends only on the stable class ψ(tv) of γv. Using the formula for c(γv)

above, we get

SO∗
t (ϕv) =

Tr(t|V )

2`
·
∑

γv

# ker(H1(R, T ) → H1(R, Gγv
))

=
Tr(t|V )

2`
· # ker(H1(R, T ) → H1(R, G)).
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The latter kernel has cardinality (W : W c). Hence we have shown

χ(G, S, V ) = (W : W c)
∑

T

1

2`
LS(Mt)Tr(t|V ) ·

∏

p/∈S

SOt(ϕp).

Finally, we consider the stable orbital integrals at the primes p not in

S. For each class t, almost all of these terms are equal to 1. For example,

if p does not divide the order of t, then there is a single class γp in the

stable class over Qp which meets G(Zp), and for this class we have seen that

Oγp
(ϕp, dµγp

) = 1. Since Gγp
is unramified in this case, e(γp) = 1 and hence

SOt(ϕp) = 1. We are left with the formula

χ(G, S, V ) = (W : W c)
∑

T

1

2`
LS(Mt)Tr(t|V ) ·

∏

p |order(t)
p/∈S

SOt(ϕp). (1)

If, for example, the torsion primes for G are all contained in S, we have

a complete formula (as the product is empty). In all cases, the primary

contribution of the stable torsion class t to χ is

(W : W c) ·
1

2`
LS(Mt)Tr(t|V ),

as claimed earlier.

The remaining calculation of SOt(ϕp) is a central local problem. For each

γp in G(Qp) which is stably conjugate to ψ(tp), we must write

C`(γp) ∩G(Zp) = q
i
Ki\G(Zp).

Then

SOt(ϕp) =
∑

γp

e(γp) ·
∑

i

1
∫

Ki
dµγp

. (2)
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Unfortunately, even the first step of decomposing the integral elements

of C`(γp) into integral conjugacy classes is not readily computable. Our

approach to computing the stable orbital integrals SOt(ϕp) in the next section

of this paper is rather round-about. We will see in the next section that the

Euler characteristic χ(G, S, V ) can be computed directly for certain G and

small S, V . We may use these values in equation (1) to get a system of

equations in the unknowns SOt(ϕp). We are able to compute enough values

of χ(G, S, V ) to solve for all of the remaining SOt(ϕp) when G is SL2, Sp4, or

G2. We give these values in section 7 and use them to compute more values

of χ(G, S, V ) via (1).

Before going on, we note that from the expression (2), it follows that SOt

is a rational number, which is positive whenever t is regular. In the regular

case, e(γp) = 1 and dµγp
has volume 1 on the connected component T 0(Zp)

of the Néron model of T = Gγp
. Hence

SOt(ϕp) =
∑

γp

∑

i

(T0(Zp) : Ki).

These “indices” can have denominators (T(Zp) : T0(Zp)). However, in all

cases where we have been able to determine SOt, it turns out to be an

integer (which can be negative for non-regular t).
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7. Algebraic Modular Forms

For this section we drop the requirement that G be simply connected, but

insist that G(R) be compact. This guarantees that G(Q) is discrete and

co-compact in G(A). For a given representation V of G over Q and an open

compact subgroup K of G(Q̂) (where Q̂ = Ẑ⊗ Q is the ring of finite adéles)

we define the space of (algebraic) modular forms on G of weight V and level

K to be the rational vector space [13]:

MG(V,K) = {F : G(A)/(G(R)+×K) → V : F (γg) = γF (g), for all γ ∈ G(Q)},

where G(R)+ is the connected component of the identity in G(R).

If K is a product K =
∏

pKp, with each Kp open and compact in G(Qp),

then the Hecke algebras H(G(Qp), Kp) each act on M(V,K), and commute

with each other in End(M(V,K)). We will fix a finite set S of places of Q

containing those for which G is ramified, and an integral model G for G over

the ring ZS with good reduction at all p not in S. For p not in S, we let

Kp = G(Zp). For primes p in S, we let Kp be an Iwahori subgroup of G(Qp),

which fixes a maximal facet in the Bruhat-Tits building pointwise.

The Steinberg representation of G(Qp) has a vector fixed by the Iwahori

subgroup, so gives rise to a 1-dimensional representation of the Hecke algebra

H(G(Qp), Kp). We call a character of this algebra special if it is the twist of

the Steinberg character by a character of the fundamental group Ω of G. We

may twist by such characters as Ω ∼= G(Qp)/G(Qp)s, where G(Qp)s ⊃ Kp is

the normal subgroup of elements of G(Qp) that preserve the types of vertices
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in the building. Thus, special representations are those representations of

G(Qp) with an Iwahori-fixed vector, where the standard generators of the

simply-connected Hecke algebra act by −1. We denote by MG(V,K)St the

subspace of MG(V,K) on which the Hecke algebras H(G(Qp), Kp) act by

special characters for all p in S.

Proposition (Padowitz [21]). Assume that G is absolutely simple and

simply-connected, and let rs =
∑

p∈S rankG(Qp). Let V be an absolutely

irreducible representation of G over Q with trivial central character, and

define K =
∏

Kp as above.

Then

χ(G, S, V ) = (−1)rsdim MG(V ∗, K)St,

except in the case when V is the trivial representation and rs > 0. In the

exceptional case,

χ(G, S, V ) = 1 + (−1)rsdim MG(V ∗, K)St.

Proof. The dimension of MG(V ∗, K)St is the number of irreducible auto-

morphic representations π (counted with their multiplicities in the discrete

spectrum) which satisfy:

• π∞ ∼= V ∗

• πp is the Steinberg representation for p ∈ S

• πp has a vector fixed by G(Zp) for p 6∈ S.
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Each such representation contributes a space of dimension m(π) in

HrS(GS(A), L⊗V ) where m(π) is the multiplicity of π occurring in L. More-

over, by results of Casselman [7], these are the only unitary representations

contributing to cohomology (except when V is trivial and rS > 0, in which

case π = C contribute a line to H0(GS(A), L)). This completes the proof.

Since we will actually compute the spaces MG(V,K)St for groups G of

adjoint type, we need a lemma to compare spaces for isogenous groups. Let

G be a reductive group (such as GLn or GSp2n) with the following property:

the derived subgroup G0 is simply-connected, and the center C of G is a split

torus. Put Ḡ = G/C, which is a group of adjoint type, and let f : G0 → Ḡ

be the corresponding isogeny.

Let V be an irreducible representation of Ḡ, which we may also view as

a representation of G0 with trivial central character. Let K0 be an open

compact subgroup of G0(Q̂), defined as above, and let K̄ be such a subgroup

of Ḡ(Q̂) which contains f(K0).

The map f : G0 → Ḡ then induces a linear map of Q-vector spaces

MḠ(V, K̄) → MG0
(V,K0) which is equivariant for the action of the Hecke

algebras. The comparison lemma we need is the following easily proved fact.

Lemma The induced map

MḠ(V, K̄)St → MG0
(V,K0)

St

is an isomorphism.

The proposition and the lemma together allow us to use the calculations
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of MG(V,K)St in [20] to get the values of

χ∗ =
1

(W : W c)
χ(G, S, V ).
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8. Examples

We now give some examples. By interpreting G(A)/K geometrically, and

making heavy use of a computer, the spaces MG(V,K) and MG(V,K)St are

worked out for certain G, V,K in [20]. In particular the calculations there

work with the (unique) form of G2 which is compact over R and with the

forms of PGSp4 which are ramified at {2,∞} and at {3,∞}.

The calculation of the M(V,K) is computationally intensive and so has

only been carried out for small weights and levels. We now tabulate the

values of χ∗ we derive from these direct calculations. The corresponding

values when G is the split form of SL2 are well known.

Directly computed values of χ∗(G, S, V ) for G = Sp4

V = Vλ

λ = (0,0) (0,1)
S dim V = 1 5

{∞, 2} 1 0
{∞, 2, 3} 1 –1
{∞, 2, 5} –1
{∞, 2, 7} –4
{∞, 2, 11} –33
{∞, 3, 5} -8
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Directly computed values of χ∗(G, S, V ) for G = G2

V = Vλ

λ = (0,0) (1,0) (0,1) (2,0) (1,1)
S dim V = 1 7 14 27 64

{∞, 2} 1 0 0 0 1
{∞, 3} 1 0 0 2
{∞, 5} 2 7 11 31
{∞, 7} 13 54 120
{∞, 11} 135
{∞, 13} 386
{∞, 2, 3} 2
{∞, 2, 7} 253

For the three split, simply-connected groups SL2, Sp4, and G2 over Q,

we will now tabulate the rational stable torsion classes. Since our groups

are simply-connected, these are just the stable torsion classes that meet the

group of rational points. We group the classes t and zt, for z in the center,

as these have the same contribution to the stable trace formula for χ. There

are 3 groups for SL2, 12 groups for Sp4, and 14 rational stable torsion classes

for G2. Similarly, one can show there are 102 rational stable torsion classes

for F4, and 785 rational stable torsion classes for E8.

The stable class of an element t in SL2, Sp4, or G2 is determined by its

characteristic polynomial on the fundamental representation of dimension

2,4, or 7 respectively. Since t is torsion, this is a product of cyclotomic

polynomials φm. We tabulate this polynomial, as well as the value L(Mt).

Using equation 2, the data in the two preceding tables, and a separate

calculation of χ(Sp4, {p}, V ) for p prime and V trivial, we are able to solve
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for the values of SOt(ϕp). Recall that we know that all but finitely many

of these values are equal to 1. We include in our tables only those values of

SOt(ϕp) which are not equal to 1. With these values computed, we are then

able to tabulate the integers

χ∗ =
1

(W : W c)
χ(G, S, V )

for many pairs (S, V ) beyond those values obtained directly from looking at

modular forms. The value of χ∗ depends only on the inner class of G over Q.

Torsion Classes in SL2

order t char poly t L(Mt) SOt

1, 2 φ2
1, φ

2
2 − 1

12

3, 6 φ3, φ6
1
3

4 φ4
1
2
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Torsion Classes in Sp4

order t char poly t L(Mt) SOt

1, 2 φ4
1, φ

4
2 − 1

1440

2 φ2
1φ

2
2

1
144

SOt(ϕ2) = 7

3, 6 φ2
1φ3, φ

2
1φ6 − 1

36

3, 6 φ2
3, φ

2
6 − 1

36

4 φ2
4 − 1

24

4, 4 φ2
1φ

2
4, φ

2
2φ

2
4 − 1

24

6, 6 φ2
1φ6, φ

2
2φ3 − 1

36

5, 10 φ5, φ10
2
6

6 φ3φ6
1
9

SOt(ϕ2) = 4

8 φ8
1
2

12 φ12
1
6

12, 12 φ3φ4, φ6φ4
1
6
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Torsion Classes in G2

order t char poly t L(Mt) SOt

1 φ7
1

1
3024

2 φ3
1φ

4
2

1
144

SOt(ϕ2) = 31

3 φ1φ
3
3

1
54

3 φ3
1φ3 − 1

36

4 φ1φ
2
2φ

2
4 − 1

24

4 φ3
1φ

2
4 − 1

24

6 φ1φ3φ
2
6 − 1

36
SOt(ϕ2) = −2

6 φ3
1φ

2
6 − 1

36

6 φ1φ
2
2φ3φ6

1
9

SOt(ϕ2) = 4

7 φ1φ7
4
7

8 φ1φ
2
2φ8

1
2

8 φ1φ4φ8
1
2

12 φ1φ
2
2φ12

1
6

12 φ1φ3φ12
1
6

SOt(ϕ2) = 4
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Values of χ∗(G, S, V ) for G = SL2, using the trace formula

V = Vλ

λ = 0 2 4 6 8 10
S dim V = 1 3 5 7 9 11

{∞, 2} 1 0 0 1 1 0
{∞, 3} 1 0 1 1 2 1
{∞, 5} 1 1 1 3 3 3
{∞, 7} 1 1 3 3 5 5
{∞, 11} 2 2 4 6 8 8
{∞, 13} 1 3 5 7 9 11
{∞, 2, 3} 1 –1 –1 –1 –1 –3
{∞, 2, 5} 1 –1 –3 –1 –3 –5
{∞, 3, 5} 0 –2 –4 –4 –6 –8

For groups of higher rank, one can enumerate the classes t and determine

the motivesMt of their centralizers. The local stable orbital integrals SOt(ϕp)

at primes p dividing the order of t are difficult to calculate. However, a good

estimate for χ∗ comes from the central terms in the trace formula, which

together contribute the rational number

#Z ·
1

2`
LS(MG) · dim V.

For G = F4, this estimate suggests that χ∗ > 103 whenever S 6= {∞, 2}, and

for G = E8, this estimate suggests that χ∗ > 1030 for all pairs (S, V ).
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Values of χ∗(G, S, V ) for G = Sp4, using the trace formula

V = Vλ

λ = (0,0) (0,1) (2,0) (0,2) (0,3) (2,1) (4,0) (0,4) (2,2) (6,0) (0,5)
S dim V = 1 5 10 14 30 35 35 55 81 84 91

{∞, 2} 1 0 0 0 0 0 0 0 0 0 0
{∞, 3} 1 0 0 0 –1 –1 0 0 –1 –1 –2
{∞, 5} 1 –1 –1 –1 –7 –6 –5 –7 –12 –12 –20
{∞, 7} 1 –5 –6 –8 –26 –27 –23 –31 –55 –58 –73
{∞, 11} –1 –25 –42 –56 –150 –167 –155 –235 –365 –378 –445
{∞, 13} –7 –51 –88 –118 –292 –329 –315 –477 –725 –762 –869
{∞, 17} –22 –144 –264 –362 –848 –968 –944 –1456 –2182 –2274 –2550
{∞, 19} –37 –225 –420 –578 –1326 –1521 –1485 –2295 –3439 –3584 –3979
{∞, 2, 3} 1 –1 –2 –2 –4 –5 –5 –7 –9 –12 –11
{∞, 2, 5} –1 –7 –14 –18 –38 –43 –43 –65 –97 –104 –109
{∞, 2, 7} –4 –26 –50 –70 –150 –174 –176 –274 –402 –420 -456
{∞, 2, 11} –33 –165 –328 –452 –974 –1135 –1135 –1775 –2615 –2722 –2945
{∞, 2, 13} –63 –321 –640 –896 –1924 –2243 –2241 –3519 –5185 –5380 –5833
{∞, 3, 5} –8 –48 –90 –122 –278 –318 –312 –480 –718 –752 –830
{∞, 3, 7} –36 –192 –368 –508 –1128 –1304 –1296 –2016 –2980 –3108 –3412
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Values of χ∗(G, S, V ) for G = G2, using the trace formula

V = Vλ

λ = (0,0) (1,0) (0,1) (2,0) (1,1) (3,0) (0,2) (4,0) (2,1) (0,3)
S dim V = 1 7 14 27 64 77 77 182 189 273

{∞, 2} 1 0 0 0 1 0 0 1 1 0
{∞, 3} 1 0 0 2 3 3 4 9 7 9
{∞, 5} 2 7 11 31 71 76 77 198 194 261
{∞, 7} 13 54 120 231 523 642 670 1520 1570 2302
{∞, 11} 135 938 1826 3613 8569 10212 10200 24308 25150 36140
{∞, 13} 386 2552 5188 9968 23500 28386 28532 67020 69594 100784
{∞, 17} 1871 13176 26160 50753 120375 144472 144384 342056 354928 511984
{∞, 19} 3733 25716 51702 99539 235579 283818 284226 670506 696348 1006692
{∞, 2, 3} 2 8 17 33 79 95 96 225 234 340
{∞, 2, 5} 35 218 460 863 2029 2476 2498 5810 6050 8814
{∞, 2, 7} 253 1822 3584 6977 16593 19864 19806 47080 48844 70350
{∞, 2, 11} 4157 28832 57922 111437 263927 317948 318206 750992 780080 1127636
{∞, 3, 5} 505 3494 6998 13509 31991 38492 38530 91012 94488 136506
{∞, 3, 7} 4039 28240 56456 108961 258247 310640 310680 734392 762552 1101360
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9. Discrete series and a conjecture

How can one account for the term (W : W c), which is the only non-stable

factor in the formula for χ(G, S, V ):

χ(G, S, V ) = (W : W c) · χ∗(G, S, V )?

On one hand, (W : W c) is the Euler characteristic of the trivial represen-

tation C of GS(A), arising from the cohomology of the trivial representa-

tion of G(R). Indeed, if K is a maximal compact subgroup of G(R) and

p = Lie(G)/Lie(K), then:

H•(G(R),C) = (Λ̇p)K .

On the other hand, (W : W c) is the number of discrete series representations

π∞ of G(R) with a fixed central and infinitesimal character. This leads us to

make the following optimistic prediction.

Conjecture. Let π be an irreducible representation of G(A) which occurs

in L = L2
disc and has non-zero GS(A)-cohomology H•(GS(A), π ⊗ V ) when

tensored with the finite-dimensional representation V of G(R).

Then either:

1. π is the trivial representation of G(A) and V = C, or

2. π∞ is a discrete series representation of G(R) with trivial central char-

acter and the same infinitesimal character as V ∗, and for all finite

places v ∈ S, πv is the Steinberg representation.
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Note that this conjecture is true when the highest weight of V is regular,

since then the only unitary representations (whether appearing in the discrete

spectrum or not) that have cohomology when tensored with V are the discrete

series representations.

Even more should be true. Let G′ be any inner form of G, with good

reduction outside of S. Let π = π∞⊗
⊗

v∈S Stv⊗π
S be the local factorization

of a representation of type 2) in L, with πS unramified. If π′
∞ is any discrete

series for G′(R) with the same infinitesimal and central character as π∞, then

we would expect that:

dim HomG′(A)

(

π′
∞ ⊗

⊗

v∈S

St′v ⊗ πS, L′

)

= 1.

If this is true, we can use the fact that discrete series representations of

G(R) and the Steinberg representation of G(Qp) contribute cohomology of

dimension 1 in a single degree, to count the number of distinct automorphic

representations of a fixed local type.

Conjecture. Let d∞ be a fixed discrete series for G(R), with infinitesimal

character equal to the infinitesimal character of V ∗. Then the number of

distinct irreducible representations π = ⊗′
vπv of G(A) with local components











π∞ ' d∞

πv ' Stv, for all v ∈ S

π
G(Zp)
p 6= 0, for all p /∈ S

which appear in the discrete spectrum L of G is equal to the absolute value

of the integer χ∗(G, S, V ) (except in the case when V = C and the group
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GS(A) is non-compact, when this number is the absolute value of the integer

χ∗(G, S, V ) − 1).

For example, when G = G2, S = {∞, 5}, and V = C, we saw that

χ∗(G, S, V ) = 2. Hence, for any discrete series representation d∞ of G2(R)

with infinitesimal character ρ, there should be a unique automorphic irre-

ducible representation π of the form

π = d∞ ⊗ St5 ⊗
⊗

p 6=5

πp

with πp unramified for all p 6= 5. For the anisotropic form G′ of G2, this is

true by calculations of Lansky and Pollack (who also determined π2 and π3).

The representation π′ of G′(A) lifts to PGSp6(A) via an exceptional theta

correspondence, and yields a holomorphic Siegel modular form F of weight

4, whose level is the Iwahori subgroup at 5 in PGSp6(Z) [14, Prop. 5.8].
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Kottwitz). Astérisque, (177-178):Exp. No. 702, 61–82, 1989. Séminaire
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134):73–88, 1986. Seminar Bourbaki, Vol. 1984/85.

[20] J. Lansky and D. Pollack. Hecke algebras and automorphic forms. Com-

positio Math., 130(1):21–48, 2002.

[21] S. Padowitz. Trace of Hecke Operators. PhD thesis, Harvard University,

1998.

[22] R. R. Rao. Orbital integrals in reductive groups. Annals of Math.,

96:505–510, 1972.

[23] A. Selberg. Harmonic analysis and discontinuous groups in weakly sym-

metric Riemannian spaces with applications to Dirichlet series. J. Indian

Math. Soc. (N.S.), 20:47–87, 1956.

[24] Salahoddin Shokranian. The Selberg-Arthur trace formula, volume 1503

of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1992.

[25] C. L. Siegel. Berechnung von Zetafunktionen an ganzzahligen Stellen.

Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1969:87–102, 1969.

50



[26] J. Tits. Reductive groups over local fields. In Automorphic forms,

representations and L-functions (Proc. Sympos. Pure Math., Oregon

State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math.,

XXXIII, pages 29–69. Amer. Math. Soc., Providence, R.I., 1979.

51


